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ABSTRACT

(In this report, several techniques to reduce speckle noise (more
generally signal independent multiplicative noise) in images are studied.
The techniques include gray scale modification, frame averaging, low-
pass filtering in the intensity and density domain, and application of the
short space spectral subtraction image restoration technique in the
density domain. Some discussions on the theoretical basis of the
techniques studied are given and their performances are illustrated by

way of examples.
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I. Introduction

The 'speckle effect' (1) is commonly observed in images generated with
highly coherent laser light. As will be illustrated later (Figure 2), it
appears as a multiple of tiny spots (or 'speckles') of varying intensity,
superimposed on the true image. Although this can be useful in certain
applications (2), speckle is generally regarded as a degrading effect. For
example, speckle in an optical radar system can reduce the probability of
target detection. Thus, the elimination of speckle is of vital concern in
such systems.

In this report, we consider the restoration of images degraded by a
multiplicative noise model (3) for speckle. The restoration techniques
that we studied include gray scale modification, multi-frame averaging,
low-pass filtering both in the intensity and density (log intensity) domain
and application of the short-space spectral subtraction image restoration
technique (4) in the density domain. As will be illustrated by way of
examples, the techniques that we studied with the exception of low-pass
filtering are generally useful in enhancing images degraded by speckle noise.

In section II, we present some statistical properties of speckle
noise on which the study reported here is based. In section III, we discuss
techniques applied to enhance images degraded by speckle in the case when
only one frame of a degraded image is available. The case when more than
one frame of a degraded image are available for processing is discussed

in section 1IV.




I1. Statistical Model for Speckle Noise

In this report, we consider a model for speckle noise which is adequate
when the degraded image has been sampled coarsely enough such that the de-
gradation at any point can be assumed to be independent from all other points.
Specifically, this model, derived both theoretically and experimentally (5),
gives for a point with intensity x(nl.nz) the corresponding point y(nl.nz)

in the degraded image as an independent sample from the following density:

D R
(y) s 1 TEa x(n,,n,) Culy) (1)
p_v(nl.nz) x(nl,nz)
where
u(y) =1 fory >0 (2)

0 otherwise
From the density of equation (1), speckle can be modelled (3,6) as a multi-
plicative noise w(nl,nz) such that
y(nl.nz) = x("l'"z) : W("l’“z) (3)

where

pW(“l-“ )(w) T ;

2 © u(w) (4)




With this model for speckle, it can be shown that the average of N

frames of the same image degraded by independent speckle for each frame

is the maximum likelihood estimate (MLE) of the undegraded image. Furthermore,
the N frame average can also be modelled as the original image degraded by

a multiplicative noise. Let yl(nl,nz),...,yn(nl,nz) be the respective observed
values of an undegraded pixel x(nl’nZ) in N independently degraded images.

(yl,yz. SERES )

Then the joint density, Pyl(“l’“z)""'yu(“l'nz) is given by
(Fiss 0 es¥ia) e (yy+e . 4yy)
1’ *’N 1 x(n,,n,) - 17N
Py (0,40 Yoo v (0 50,) & N - e 172 u(y,,. v..)
11" 27 SENG RS2 (x(nl.nz)) : 1’°°°*’N
(5) ‘
where u(yl,...,yN) = u(yl)-u(yz)...u(yN) (6)
This expression is maximized when
= ’ = —
X(nl.nz) y (“1’“2) N f=1 yi(nl,nz) y (7)

Thus, the average of N speckle frames is the MLE of the undegraded image.
Since yi(nl,nz) = x(nl,nz)-wi(nl,nz) ’ (8)

A

x(nl,nz) or y'(nl,nz) in equation (7) can be written as

A

= L = w!
x(nl.nz) y (“1’“2) x(nl,nz) w (“1'“2) 9)
where
1 N
A B —
w (nl,nz) N & wi(nl,nz) ’ (10)
i=1
3




From equation (9), the MLE x(nl.n,) or y'(nl.nz) can also be modelled by the
noise-free image x(nl'nz) degraded by multiplicative noise w'(nl,nz). From
equation (10), if only a single frame is available such that N=1,
L: L]
w (nl,nz) equals w(nl,nz) in equation (4) and y (n].nz) equals y(nl,n2).
From equations (3) and (9), it follows that if y(nl,nz) or y'(nl.nz)

is logarithmically transformed such that

log y(nl,nz) = log x(nl,nz) + log w(nl,nz) (11)
- ' - '
and log vy (nl,nz) log x(nl.nz) + log w (nl,nz) " (12)

the noise component of log w(nl.nz) or log w'(nl,nz) is an additive one.
Image restoration techniques such as a spectral subtraction technique (4)
require the knowledge of the second order statistics of additive noise.
Results on the statistics for logarithmically transformed speckle (3) are

summarized below.

(R1) For a single speckle frame, the mean and variance of log w(nl.n,) are

given by
m = Euler's constant = 0.577...

of a1°/6 = 1,64

(R2) For N speckle frames that are averaged, the mean of log w'(nl.n,) is
the same as in (R1) and the variance of log w'(nl.n,) for N >> 1 can be
approximated by

02 ~ 1/N




(R3) If D is the mean intensity of the logarithm of the speckle image and

signal-to-noise ratio is defined as
S/N = 20 log B/o?
then S/N ig on the order of 0 to 1 dB for most speckle {mages.
(R4) For N averaged speckle frames
S/N = 20 log (DVN)
These statistics of speckle were used for generating degraded images as

well as choosing appropriate parameters for the restoration techniques.

The rest of this report describes these techniques and the results obtained

from them.




I1I. Techniques for Reduction of Speckle Noise: Single Frame Case

In this section, we discuss various techniques that we have studied to
enhance images degraded by speckle noise when only one frame of speckle
fmage is avaflable for processing. The techniques that we have considered
are gray scale modification, low-pass filtering in the intensity and density
domains and short space spectral subtraction in the density domain and they

are discussed in sections II1T1.1, I11.2 and III.3, respectively. f
1. Gray Scale Modification

To illustrate a basis for gray scale modification, the histograms of

an original image and the same image degraded by artificially generated
speckle noise are shown in Figures 1(a) and 1(b). From the figures, it can
be seen that speckle noise tends to shift the image to a darker side in

the luminance domain, and the overall brightness of an image degraded by
speckle noise is generally much darker than the original image. A common
technique used to correct such a problem is some form of gray scale
modification (7,8). 1In Figure 1(c) is shown a threshold clipping technique
for gray scale modification and in Figure 1(d) is shown the histogram of an

image obtained by modifying the gray scale of the image shown in Figure 1(c).

In general, we have found that a simple gray scale modification improves

the quality of both unprocessed and processed images and consequently will

be used in illustrating all the examples in this report.

2. Low-pass Filtering

From equations (3) and (4), speckle noise can be modelled by an
independent multiplicative noise w(nl,nz). Since speckle noise at a point
in space is assumed to be statistically independent of anv other points, the

multiplicative noise w(nl.nz) is wide band random noise. Suppose we
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Fig. 1(a-d). (a) Histogram of a noise-free image (a picture of a clock).
(b) Histogram of the same image of Fig. 1(a) degraded by speckle noise.
(c) A gray scale modification technique by threshold clippling. (d) His-
togram of the degraded image of Fig. 1(b) enhanced by the gray scale
modification technique of Fig. 1(c).




decompose the noise-free image x(nl.nz) into two components, one obtained by

low-pass filtering and the other obtained by high-pass filtering so that
x(nl,nz) = xL(nl,nz) + xH(nl.nz) (13)

where X and X4 represent the components obtained by low-pass filtering and
high-pass filtering respectively. Similarly, w(n],nz) can be decomposed into

two components such that
w(nl,nz) = wL(nl,nz) + wH(nl,nz) ; (14)
Combining equations (6), (13) and (14),

y(n,n,) = x (n,n,)w (n) n,) + x (n),n0,) w (0 ,n,)

+xH(nl,n2)-wL(nl,n2) + xH(nl,nz)-wH(nl,nz) s (15)

Qualitatively speaking, from equation (15) low-pass filtering y(nl,nz)
approximately leads to xL(nl,nz)-wL(nl,nz). Since the image x(nl.nz)
generally has large amplitude low-frequency components relative to high-
frequency components while speckle noise w(nl,nz) is wide-band random noise,
low-pass filtering y(nl,nz) may be viewed as an operation that attempts to
improve the S/N.

We have applied various different types of low-pass filters to y(nl.nz).
In general, the lower the cut-off frequency, the more speckle noise appears
to be reduced, but at the same time, the resulting image is noticeably blurred.
As an example of low-pass filtering to reduce speckle noise, in Figure 2 are
shown two noise-free images. In Figure 3 are shown the two images in Figure 2
degraded by artifically generated speckle noise and in Figure 4 are shown

the two images in Figure 3 processed by low-pass filtering.
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In the above discussions, we have considered low-pass filtering in the
intensity domain. Low-pass filtering in the density domain also has a
theoretical basis. Specifically, from equation (11), speckle noise is an
additive component in the density domain. For typical images, log x(nl,nz)
has large amplitude low-frequency components relative to high-frequency
components while the additive component log w(nl,nz) is wide-band random
noise. Therefore, low-pass filtering log y(nl,nz) generally reduces
log w(nl,nz) more than log x(nl,nz) thus leading to a S/N improvement.
Filtering in the density domain so that the multiplicative component
becomes an additive component is known as homomorphic filtering (9).
Homomorphic filtering to reduce speckle noise has been considered in (6,10).

We have applied various different types of low-pass filters to
log y(nl,nz) and as a typical example the two images in Figure 3 processed
by low-pass filtering in the density domain are shown in Figure 5. Like
low-pass filtering in the intensity domain, we have found that speckle
noise is reduced but the resulting images are noticeably blurred. Due to
the high degree of image blurring relative to the amount of speckle noise
reduction, low-pass filtering in the density or intensity domain does not

appear to be a useful technique in practical applications.

3. Short Space Spectral Subtraction Technique

Since speckle noise can be modelled by an additive random noise in
the density domain, in addition to simple low-pass filtering, there exists
a variety of other restoration techniques such as Wiener filtering (11,12)
and power spectrum filtering (13) that may be applied to reduce the
additive random noise. One technique which has been particularly successful
in reducing additive random noise at relatively high S/N is short space
spectral subtraction image restoration (SSIR) technique*. This technique

requires only the knowledge of the power spectrum of the additive random

* A brief description of this technique is given in the Appendix. A more
detailed discussion can be found in (4).




noise. The additive noise log w(nl,nz) is broad-band and its spectral
amplitude can be determined from (R1). In Figure 6 are shown the two
images in Figure 3 processed by short space SSIR technique. It is clear
from Figure 6 that speckle noise is reduced without noticeably blurring

the image. However, the remaining degradation looks like a moiré'pattern
superimposed on the original image. Informal tests show that improvement
in image quality by such processing is debatable. This result is partly
due to the fact that there is no known algorithm which effectively enhances
images degraded by additive random noise at a very low S/N such as 0 or 1dB.
When the S/N is increased by frame averaging, a more promising result is

obtained as will be discussed in the next section.
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Fig. 5. Images in Fig. 3 processed by low-pass filtering in the
density (log intensity) domain

Fig. 6. 1Images in Fig. 3 processed by a short space spectral
subtraction image restoration technique
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IV. Techniques for Reduction of Speckle Noise: Multiple Frame Case

When N frames of the same image but with independent speckle noise are
available for processing, the MLE of the noise-free image is the average of
N frames given by equation (7). The frame averaging technique to reduce
speckle noise has been considered in (2,14). In Figure 7 are shown y'(nl,nz),
the results of averaging four frames of independently degraded speckle
images of Figure 3. Consistent with the theroetical results of (R1) - (R4),
comparison of Figures 3 and 7 clearly shows that frame averaging increases
the S/N and improves the image quality and intelligibility.

From equations (9) and (10), y'(nl,nz), the result obtained by frame
averaging, can again be viewed as an image degraded by a broad-band multi-
plicative noise. Consequently, all the techniques discussed in section III
may be applied to further reduce speckle noise.

We have applied various different types of low-pass filters to y'(nl,nz)
both in the intensity and density domains. As a typical example of low-pass
filtering applied to y'(nl,nz), in Figure 8 are shown two images in Figure 7
processed by low-pass filtering. The results obtained by low-pass filtering
in the density domain are shown in Figure 9. As in the single frame case
discussed in section III, we have found that low-pass filtering reduces the
multiplicative noise but at the same time noticeably blurs the resulting images.

We have also applied short space SSIR technique to log y'(nl,nz) with
the spectral amplitude of log w'(nl,nz) obtained from (R2) and (R4). The
results are shown in Figure 10. Even though the signal correlated degradation
that looks like a moiré’pattern is still visible in the figure, the amplitude
of the degradation is smaller and is not too apparent in those regions without
uniform intensity. Furthermore, reduction of the multiplicative noise without
noticeably blurring the image is evident in the figure. This is consistent
with the result (4) that short space SSIR technique is more effective in
restoring images degraded by additive random noise at relatively high S/N.

e S
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As an additional example, we have considered the case when eight frames

of independently degraded speckle images are available for processing.

Figures 11, 12, 13 and 14 are equivalent to Figures 7, 8, 9 and 10 with the

difference that eight frames rather than four frames have been used. Our

discussions in the four frame case are also applicable to the eight frame case.
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Fig. 9. Images in Fig. 7 processed by low-pass filtering in the
density domain

Fig. 10. 1Images in Fig. 7 processed by a short space spectral
subtraction image restoration technique f
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Fig. 11. Results of averaging eight frames of independently

degraded speckle images of Fig. 3
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Fig. 12. 1Images in Fig. 11 processed by low-pass filtering in the
intensity domain
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Fig. 13. 1Images in Fig. 11 processed by low-pass filtering in the
density domain

Fig. 14. 1Images in Fig. 11 processed by a short space spectral
subtraction image restoration technique
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V. Conclusion

In this report, we have considered the problem of restoring images
degraded by speckle noise. The specific techniques that we have studied
are gray scale modification, frame averaging, low-pass filtering in the
intensity and density domain, and short space SSIR technique in the density
domain.

In general, some form of gray scale modification has been found to be
useful in enhancing images degraded by speckle noise. If only one frame
of speckle image is available, then neither low-pass filtering nor short
space SSIR technique has been found to be effective in restoring images
degraded by speckle noise. When multiple frames of speckle images are
available for processing, frame averaging which corresponds to the maximum
likelihood estimation of the noise-free image has been quite effective in
increasing the S/N and improving the image quality and intelligibility.
Furthermore, the short space SSIR technique applied to the results of frame
averaging appear to have some usefulness in further reducing the degradation.
Low-pass filtering, however, does not appear to be useful in the multiple

frame case.
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APPENDIX. Short Space Spectral Subtraction Image

Restoration Technique

In the short space SSIR technique, the degraded image r(nl,nz) is
divided into many subimages each of which is restored separately and then
the restored images are combined to form an estimate of the noise-free

image f(nl’nZ)' More specifically, let r(nl,nz) be represented by

r(nl,nz) = f(nl,nz) + d(nl,nz) (A1)

where d(nl,nz) denotes an additive random noise uncorrelated with f(nl,nz).

By applying a 2-D window function wij(nl,nz) to equation (Al),

r(nl,nz) ‘ wij(nl’n2) = f(nl,nz) . wij(nl,nz) + d(nl,nz) . wij(nl‘n2) . (A2)
Rewriting equation (A2),

(n .n2) +d

rij(nl’n2) =fij 1 (nl,nz) (A3)

ij

where rij(nl,nz) represents r(nl,nz) . wij(nl,nz), and fij

dij(nl’nz) are similarly defined. To estimate the noise-free gubimage

(n,,n,) and
1’2

fij(nl’n2) from rij(nl’n2) in equation (A3), Fij

space Fourier transform* of fij(nl’nZ)’ is first estimated and then inverse

(w,,w,), the discrete
1l

*The definition of discrete space Fourier Transform, power spectrum and
energy spectrum, and the determination of the normalization constant "k"
can be found in references (4) and (15).
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Fourier transformed. The discrete space Fourier transform Fij(wl’w2) is

estimated by a particular form of spectral subtraction (6);

~

2
1
Fij(wl,mz) = (|Rij(w1,w2)| - a-k-P (0, ,w,))

el B Ry ) (a4)

2
for IRij(wl,wz)I > orkeP (w),0,)

and 0 otherwise
where Fij(ml’wz) represents an estimate of Fij(wl’wz)’ Rij(wl’wz) represents
<
the discrete space Fourier Transform of rij(nl,nz), Rij(wl’wz) represents

the phase of R (wl,mz), "a" is a constant, "k'" is a scaling factor that

ij
normalizes the power and energy spectral densities, and Pd(wl,mz) represents
the power spectrum of the additive random noise. From the estimated
fij(nl’nz)’ an estimate of f(nl,nz) is obtained by combining the restored

subimages;

f(nl,nz) =y fij(nl’nZ) (A5)
I 2 60| R
where fij(nl’n2) represents the estimated fij(nl’nZ) and f(nl,nz) is similarly

defined.

In implementing the short space SSIR technique, in this report, a
separable 2-D triangular window of size 16 x 16 pixels overlapped with its
neighboring window by half the window duration in each dimension was used

for w (nl,nz) and the value of "' was assumed to be approximately 1/2.

ij
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